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On the basis  of experimental  observations and theoret ical  analysis  of flow s t ructure  in the 
neighborhood of the tr iple point, it is shown that one should re ject  the condition for equality 
of the angle of deflection of flows passing through the Mach front and the two other  fronts  
and replace itwith some supplementary condition. The sys tem of consis tency equations in the 
indicated region is closed by an equation which is obtained under the assumption of the ex-  
t remal i ty  of the deflection angle of a flow passing through the incident and ref lected fronts.  
Calculations of the p res su re  drops behind the shock fronts agree with experimental  data in 
this case.  

1. The relat ions charac te r iz ing  the reflection of weak shock waves from a rigid wall have been 
studied ra ther  completely within the confines of the acoustic approximation [1]. For  large angles of inci- 
dence, the resul ts  of this work can be extrapolated to the case  of waves of small  but finite amplitude. 

At small  angles the l inear acoustic approximation is qualitatively incorrect .  As has been shown [2, 
3], the theory of small  perturbat ions leads in this and s imi lar  cases  to nonlinear equations for short  waves 
with nonlinear boundary conditions. Within the f ramework  of the theory  of shor twaves ,  the problems of 
regular  reflection and almost-grazing incidence were considered wfiere the ref lected shock wave degener -  
ates into a weak discontinuity [2, 4]. In the lat ter  case,  the motion can be studied by the Lighthill method 

[51. 

The problem of Mach interaction ofshockwaves  with relat ively small  but finite p re s su re  drops at 
angles of incidence close to the cr i t ica l  angle has also been considered [2, 3]. The magnitudes of the p r e s -  
sure  drops at shock fronts in the neighborhood of the tr iple point were not determined in [2-9]. Exper i -  
mental papers  [6-9] and review papers  in [10, 11] are  coneernedwith this problem. 

This paper presents  the resul ts  of an experimental  study with a shock tube, using optical methods, 
of Maeh reflection of weak shock waves from a rigid wall over  a broad range of angles and relat ive inten- 
si t ies along with some theoret ical  relat ions which were obtained f rom the consis tency condition at the shock 
fronts.  

Let a plane shock wave be incident on a wedge with an opening half-angle (~. The angle between the 
normal  to the ref lected shock front at the point of intersection of the shock waves and the surface of the 
wedge is called the angle of reflection fl and ~ is the angle of incidence. Regular reflection occurs  for  
angles ~ g r e a t e r t h a n  a cer ta in  c r i t ica l  angle (~*. One can establish a relation between ~, fl, and the inten- 
si t ies of the incident and reflected shock waves, AP i = P l - P 0  and AP 2 =P2-P0 ,  at their  point of intersect ion.  
Here,  P0 is the initial p res su re ;  Pl and P2 are  the p r e s su re s  behind the incident and reflected shock fronts.  

Simple approximate formulas  were obtained for this case  [2]. A ratio of the p re s su re  drops at the 
point of intersection of the shock fronts Ap~ /AP  i ~ 3 cor responds  to the c r i t ica l  angle. When ~ < ~ *, a 
third, Mach shock wave a r i ses  which connects  the point of intersection of the incident and ref lected shSck 
waves with the rigid wall. We superimpose the origin O of a cyl indrical  coordinate sys tem r, ~p on the 
angle of the wedge and measure  the angle ~0 f rom the surface of the wedge. If the flow is se l f - s imi la r ,  the 
point of intersection A of the three shock waves must be displaced along some ray  ~0 = • The p res su re  
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d i f f e r e n t i a l  d r o p s  a l o n g  the  r e f l e c t e d  wave  in p r o p o r t i o n  to  s e p a r a t i o n  f r o m  t h e  t r i p l e  po in t  and  the  r e -  
f l e c t e d  wave  d e g e n e r a t e s  into a w e a k  d i s c o n t i n u i t y  with su f f i c i en t  sepa ra t ion~  

Le t  r 1 =r~ (q, t ) ,  r 2 = r  2 (q~, t) ,  and  r 3 = r  3 ( r  t) be the  e q u a t i o n s  f o r  the  inc iden t ,  r e f l e c t e d ,  and  Mach 
shock  w a v e s .  We w r i t e  the  e q u a t i o n s  fo r  t h e s e  f r o n t s  and  the  c o n s i s t e n c y  c o n d i t i o n s  on t h e m :  

dr t / Ot = NI[t  + tg 2 (a + q~)]", 

u 1 = q l c o s ( a + t P ) ,  v l = - - q l s i n ( a + q ~ )  

Or2 / Ot -= [N2 + ql cos (a + ~)][1 + tg 2 (13 - -  qD)[", 

ua = q2 cos (j3 - -  r + qt COS (a + (p) 
v ~ = q ~ s i n ( J $  ~ $) - -  ql sin (a + $) 

Or s / d t  = N s  (t + tg 2 ~)", 

u s = q s C o S %  v 3 =  - - q a s i n  

Ar~L 3 = c02[t + 1 / 2(n + t)el. s] (1.1) 

Ns 2 = co2[t + I/2(n - -  l)e~ + 1/2 (n + t)e21 (t + F~) - t  
2 = CoS8~ a[t ~t_ t/2(n 3t_ t)el, s l - t  qt,a 

q2 ~ = co2(~2 - -  et)2[l + l/~(n - -  t )et  + t/2(n + 1)%I -~ (t + r,)-, 
r t ,  s = e1,s[i + ~/~(n - -  l)el,~] -~ 

1"2 = e2(t + ne~)[t + h e 1  + 1 / 2 ( n  - -  l)e~ + ' / ~ ( n  ~ - -  l ) e l  2 q- ~ / ~ ( n  - -  i)'~le~I -~ 

e~ = (P~ - -  Po) / nPo,  Fi = (O~ - -  po) / po, i =  1 , 2 , 3  

H e r e ,  q i s  the  a n g l e  b e t w e e n  the n o r m a l  to  the  Mach s h o c k  f r o n t  and  the  d i r e c t i o n  of  t he  r a d i u s  v e c -  
t o r ;  Nt. 3 a r e  the  r a t e s  of p r o p a g a t i o n  in the  d i r e c t i o n s  of the  n o r m a l s  to  the  inc iden t  and  Mach shock  f ron t s ;  
N 2 i s  the  r a t e  of p r o p a g a t i o n  of  the  r e f l e c t e d  shock  f ron t  wi th  r e s p e c t  to  the  p a r t i c l e s  by  which  it i s  p r o p -  

a ga t ed ;  qt,  q2, and  q3 a r e  the  d i f f e r e n t i a l  p a r t i c l e  v e l o c i t i e s  a t  t he  c o r r e s p o n d i n g  shock  f r o n t s ;  0~, P2, and  
~ a r e  the  d e n s i t i e s  beh ind  the  c o r r e s p o n d i n g  f r o n t s ;  Po i s t h e  i n i t i a l  dens i t y ;  u and v a r e  the  p r o j e c t i o n s  of 
the  p a r t i c l e  v e l o c i t y  v e c t o r s  on the  d i r e c t i o n  of  the  r a d i u s  v e c t o r  and p e r p e n d i c u l a r  to i t ;  t i s  t i m e ;  c o i s  
the v e l o c i t y  o f  sound;  n i s  the  a d i a b a t i c  index .  

At  the  po in t  of  i n t e r s e c t i o n  of  the  t h r e e  shock  w a v e s ,  

rt = ra = ra, P~ = Pa (1.2) 

The  l a s t  cond i t i on  i s  s a t i s f i e d  if t he  c o n f i g u r a t i o n  of  t he  shock  w a v e s  is  such  tha t  the  f low behind  the  
f r o n t s  is  subson i c .  If the  f low is s u p e r s o n i c ,  c e n t e r i n g  of  a r a r e f a c t i o n  wave  i s  p o s s i b l e .  

O r d i n a r i l y  we have f o r  a t h i r d  cond i t i on  a t  t he  t r i p l e  po in t  [10] equa l  de f l e c t i on  of  the  f lows  p a s s i n g  
t h r o u g h  the  two shock  f r o n t s ,  (| and  t h r o u g h  the  s i n g l e  (Math)  s h o c k  f ron t  (03). Since  

v~cos(ct+r , t g O a =  vscos(a+cp) (1.3) 
tg 0= = N~ --  u= cos (a + (p) N~ --  u= cOS (= + q~) 

t h i s  cond i t i on  can  be w r i t t e n  in the  f o r m  

v2[N 1 - -  u s cos (a + X)] = vs [Nt  - -  ~ cos (a + X)] (1.4) 

If F1 o r  a t  a r e  c o n s i d e r a b l y  l e s s  than  one (weak  s h o c k  w a ve s ) ,  Eqs .  (1.1) c a n  be  c o n s i d e r a b l y  s i m -  
p l i f i e d  by expand ing  t h e s e  e q u a t i o n s  in a s e r i e s  in p o w e r s  of  F1, e l ,  o r  any  o t h e r  p a r a m e t e r  F0 c h a r a c -  
t e r i z i n g  the  r e l a t i v e  d e n s i t y  o r  p r e s s u r e  d r o p  a t  t he  i nc iden t  w a v e  f ron t .  In f i r s t  a p p r o x i m a t i o n ,  Eqs .  (1.1) 
t a k e  t h e  f o r m  

(061/0(p~ 2 = 2 6  I + 2 0 6 1 / 0 r - 7 , ,  v 1 =  - - 7 1  861 /0~  ~ 

(862 / 0~~ ~ = 262 + 2862 / Or - -  72 - -  Yl, % = --(Y2 - -  71)062 / a ~ ~  ~i (1.5) 

(063/0(p~ 2 = 2 6 3 + 2 0 6 3 / 0 r - 7 3 ,  v 3 = - - Y - ~  063/0(P ~ 

H e r e  the  fo l lowing  d i m e n s i o n l e s s  c o o r d i n a t e s  and  func t ions  w e r e  i n t r o d u c e d  in a c c o r d a n c e  with  [2]: 

q)~ = ~V/~(n  + t ) ro ] - ' , ,  ~ = (r - -  Cot)W2(n + l)rocot] - I  
= v / CoPo[1/~(n +L l)Fo],/, ' ~a = U/coFo (1.6) 

y = r / r o ,  x - =  l n t  
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Equat ions  (1.5) a r e  a f i r s t  app rox ima t ion  fo r  the expans ion  of  Eqs.  
(1.1) in a s e r i e s  o v e r  a smal l  p a r a m e t e r  under  the eondit io~ r ~ Fol/2. 

If the f lowls  expl ic i t ly  independent of t ime ,  Eqs.  (1.5) take the f o r m  

d~  / d~ o = (2~, - 7~)"', v, = - 7~ d6, I dq~ ~ 

d 6 , / d +  ~ = =h (253 - -  7~ --  7,)"', v2 ---- - -  (73 - -  T,) dSz / d+ ~ + ~, (1.7) 

d83 /d r  ~ 1 7 7  '/,, % = - - T s d 6 z / d $  ~ 

We obtain f r o m  Eqs.  (1.2) and (1.47 condi t ions  at the point  A for  a 
f i r s t  approx ima t ion  

61 = 63 = 63, 73 = ?", v 3 = v, (1.8) 

Since in first approximation we have at the point A 

d6t / dr ~ = bl, d63 / dr = b2, d6a / dr ~ = , ~  
b 1 = (a + X)[*/3(n + t)r0l-':, ,  b3 = (g - -  X)['/3(n + t)r0I-': ,  
*o = ~P/ , (n  + l )r0]-v,  

(1.9) 

Eqs.  (1.7) at  th is  point  a r e  t r a n s f o r m e d  to  

v, = --u v,---- =h (73--7,7 (b, 2 - 7 3 ) ' : ' - 7 , b ,  

v s  = 4 -  7 3 ( b l  3 - -  73 + 7 , ) " ' ,  b3 ---- -4- ( b l  3 - -  73)"'  

, ~  ---- 4- (bl a - -  7, -4- 71)"' 

(i.i0) 

Figure  1 shows the dependence  of  r 2 and  u s on T2 in a c c o r d a n c e  with Eqs.  (1.10) and the dependence 
of  0{  =02 r o - l [  l/2 (n + 1)Fo] - I /2  and 0 3 ~ =0.~ r o - l [  1/2 (n + 17 r 01-1/2 on "/2, which was  obtained f r o m  ca lcu la t ion  s 
ba sed  on Eels. (1.1) f o r  the c a s e  Fo = r l  =0.02. In both c a s e s ,  the angle  b t was  taken to be 1.85 

03~ --~ v3(72). 0s~ -~ ~3(73) fo r  F, -+ 0 

It is  c l e a r  f r o m  the c u r v e s  shown that  Eqs.  (1.10) have s ingle  roo t  "/2 =1 when F1 -* 0 s ince  the c u r v e s  
r2 (T2) and u S ("/2) i n t e r s e c t  only at the init ial  point. The c o r r e s p o n d i n g  shock  c u r v e s  f o r  Maeh and r e -  
f l ec ted  waves  a l so  i n t e r s e c t  only  at the point  "/2 =1.  Ca lcu la t ions  show that  the c u r v e s  i n t e r s e c t  only at the 
init ial  point  fo r  r 1 ~ 0.2 and fo r  all  angles  of  inc idence  c o r r e s p o n d i n g  to  Mach ref lec t ion .  Th i s  c o r r e -  
sponds to degene ra t i on  of  a r e f l e c t ed  shock  wave into a weak  discont inui ty .  

The c a s e  where  c e n t e r i n g  of  a r a r e f a c t i o n  wave o c c u r s  in the  ne ighborhood  of  the t r ip le  point  A 
( P r a n d t l - M e y e r  flow) is t h e o r e t i c a l l y  poss ib le  [12]. The equat ions  fo r  th i s  flow in the notat ion (1.6) take  
the  f o r m  [3] 

! 7 = - -  1/3 (6  - -  6A)  3 ( r  _ r  + YA 

%1 = 1/8 (6 - -  6A)  3 ((~0 _ ( ~ A 9 - 3  + VA 

o r  

7 = - -  1/2 [3(v - -  va)]'/' + 7a (1.11) 

The s lope  of  the c h a r a c t e r i s t i c  with r e s p e c t  to  a d i r ec t ion  p e r p e n d i c u l a r  to  the  r ad ius  v e c t o r  to  t h e  
point  A is d e t e r m i n e d  by  

d6 1 d~ ~ = --[2 (6 - -  7)1'/, (1.127 

One ea s i l y  obta ins  f r o m  Eqs .  (1.107-(1.12) the fol lowing e x p r e s s i o n s  fo r  the  de t e rmina t i on  of all  flow 
p a r a m e t e r s  in the ne ighborhood  of  the t r ip le  point,  

b3 = [112 ( b l  3 - -  71)]"' ,  73 = 1/3 (bx 3 + 7*) 

vl  = --(73 - -  7,)[1/~(b1 ~ - -  71)] v' - -  7*b, (1.13) 
,~  __- (273  - -  73)'/ , ,  v s ---- _ 7 3 ,  ~ 

7 3  = 73 - -  ' /3 [3  ( v s  - -  v~)]':, 

In the ne ighborhood  of the t r ip le  point  A, 73 < ,/2 ; the m a x i m u m  value VA =2.5 is r e a c h e d  when b l = 2 .  
The dens i ty  d rop  a long the r e f l e c t ed  wave f ron t  f i r s t  i n c r e a s e s  in p r o p o r t i o n  to  sepa ra t ion  f r o m  the  t r ip le  
point,  r e a c h i n g  a m a x i m u m  at some  d i s tance  f r o m  it, and then fal ls .  
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Fig. 2 Fig. 3 

2. The reflection of weak shock waves f rom a wedge was studied experimental ly  for 0.009_< F l _< 
0.132. 

The exper iments  were pe r fo rmed  in a d iaphragmmed shock tube with a rec tangular  channel 90 x 45 
mm in size. In o rde r  to produce shock waves of lowest possible intensity, a h igh-pressure  chamber  was 
used which had a c ro s s - s ec t i ona l  a rea  five t imes smal le r  than the c ro s s - s ec t i ona l  a r e a o f  the channel. Between 
the h igh-p ressu re  chamber  and the channel, a transit ion section was installed in the form of a nozzle with a profile 
selected so that formation of reflected wave trains from the wall which per turb  the "plug" behind the lead wave 
was avoided. By varying the p re s su re  in the channel f rom 0.2 to 11 kg/cm 2 and the drop at the cel lophane-fi lm 
diaphragm f rom 1 to 3 kg/cm 2, we were able to va ry  the wave intensity over  the range 0.009 < F 1 < 0.34. The shock 
tube was equipped with an IAB-451 shadowgraph, an IT-42 M a c h -  Zender in te r fe rometer ,  and an SFR high-speed 
camera .  Shadowgraphs and Schilieren photographs were taken to obtain c l e a r e r  p ic tures  of shock-wave 
configurations.  To measure  the distribution of the density drop at the shock fronts and in the flow behind 
them, in t e r f e rograms  were  taken with an initial infinitely broad band and with bands of finite width. 

The f i rs t  kind of in te r fe rogram (Fig. 2) makes it possible to follow In detail changes in the re f l ec -  
tion pat tern during var ia t ion  of the initial conditions since the interference bands cor respond  to lines of 
equal density in this case .  

The second type of in te r fe rogram (Fig. 3) is suitable for obtaining numerica l  values of the density 
at any point in the field. 

In calculat ing the reflection pat tern within the confines of the shor t -wave theory,  the basic function 
sought is T (in [2, 3], it is p; in f i rs t  approximat ion~ = 7 ) .  

Values of T along the ref lected and Much fronts were measured with the help of the second kind of 
in ter ferogram.  The density drop Ap is proport ional  to the band shift Am at the cor responding  point in the 
in ter ferogram.  If the density drop is Ap 1 behind the front of the incident shock wave and the band displace-  
ment on the in te r fe rogram is Aml,  then for  F0 = r l  

h p / A p x =  Am/Am I = y 

To obtain more  prec ise  data, the device was f i red severa l  t imes  with the same wave p a r a m e t e r s  and 
angles ~. The initial position of the interference bands var ied  slightly f rom experiment  to experiment.  
In terference pat terns  were  recorded  in white and monochromatic  light. With reliable identification of a 
band, th is  made it possible to increase  the accuracy  of band-shift  measurement  to 0.05 bands for an inci-  
dent wave and to 0.1-0.3 bands for ref lected and Mach waves. The e r r o r  in the determination of incident- 
wave intensity and of the value of T did not exceed 2 and 5% respect ively.  

The in t e r f e rograms  and shadowgrams demonst ra ted  the se l f - s imi la r i ty  of  this phenomenon. Wave 
configurations at var ious  moments  of t ime were  s imilar .  Along rays  s tar t ing f rom the angle of the wedge, 
the density drop at the shock fronts during motion remained  unchanged, i.e., T =T (~0) for given F1 and ~. 

Averaged curves  in the 7, ~0 plane were cons t ruc ted  f rom an analysis  of a se r ies  of in t e r fe rograms  
for identical 1~1 and a .  The values of T at the foot of the Mach wave (~B) and at the t r iple  point (~/A) were 
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were  determined f rom the points of intersection of the resultant  curve with the lines ~0 =0 and • For  
example, the relation T (~0) for F1 =0.132 is shown in Fig. 4. Curve 1 was obtained for T =32~ ()~ =0), 
curve  2 for T =26.3~ (X =1.2~ and curve 3 for  T =20.5~ (X =3.4~ The position of the tr iple point A is 
shown on each curve.  The maximum density drop is reached at the shock front on the surface of the wedge. 
The density drop along the Mach and reflected fronts,  and the quantity ~/ corresponding to it, fall monotoni-  
cally in proport ion to the increase  in the angle ~. At the tr iple point 

u  r l )  or 7A=~A(a-{-%,  rl) 

When r l  << 1, the motion can be d iscussed within the confines of the short -wave theory.  In this case 

7A ---- yA (bl) (2.1) 

Values of TA (bl) corresponding to 0.0085 -< F1 <-- 0.022 are  indicated in Fig. 5 by open c i rc les .  The 
data presented indicate the density undergoes a jump at the reflected wave front even for ve ry  small  
values of F1 and small  wedge angles ( c~ < 1/2 c~ *). 

3. The facts established cannot be explained within the f ramework  of the th ree - shock  theory.  The 
difficulties which a r i se  in an attempt to explain the observed phenomena have been discussed [6, 13]. We 
assume that the p re s su re  drops at the shock fronts  in the neighborhood of the tr iple point A and the angles 
c~ + X, ~ - X, and r associa ted with them take on values for which the flows pass ing through the incident 
and reflected shock fronts are  deflected by the minimum possible angle. The values of v 2 are  also minimal 
then. The flow deflection angles 02 o and @3 o in the shock curves  in Fig. i co r respond  to this mode of motion. 

Under such an assumption, one can obtain in f i r s t  approximation the dependence of b 1 and b 2 on TA 

b, = [ ' I , (3u - -  i ) r " ,  b, = [I"I:(?A - -  liP,'. (3.1) 

The curve TA = TA (bl) calculated f rom Eq. (3.1) is shown in Fig. 5. The experimental  data (open 
ci rc les)  a r e t o t h e  left of this curve.  With an increase  in r l ,  the points obtained f rom an analysis  of the 
experimental  data are  shifted even more to the left. If in place of the argument  

bl ---- (a 4- X) [ '&(n  4- l ) r , l - ' , ' ,  = (a + x ) ( ' / , ~ * ) - '  

in Eq. (2.1), we take 

bl~ = (a -I- ~) (ll~a , ) -1  

the experimental  data obtained for  0.0085 _ r l  -< 0.132 (solid c i r c l e s  in Fig. 5) lie on ~he general  curve.  

Equations (3.1) are  t r ans fo rmed  to 

a -t- ~ ---- Vza~*[V2(3yA- i)]', 

fJ - -  7~ ---- I /~a ,  * [ I f :  (7A - -  i )P: '  (3.2) 

Here, ~ * is the value of the critical angle calculated from the asymptotic expression, ~e * is the 
observed value, and ~*~ ~e*, bl--~ ble when rl -" 0. The difference between ~* and C~e* is significant 

when rl > 0.05. 
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Thus the exper iments  a re  in ag reement  with Eqs.  (3.2) and disagree  qual i tat ively with the theory  
given in Section. 1. 

Apparent ly Eq. (1.4) is not sat isfied at the t r ip le  point, i .e. ,  in the neighborhood of that point, the veloc- 
ity vec to r s  of the pa r t i c l e s  passing through one and two shock fronts  fo rm a finite angle @3 - | i_n the 
moving coordinate  sys tem.  The re  must  be a region bounded by two tangential  discontinuit ies where the 
veloci ty  is cons iderably  reduced and the p r e s s u r e  is the same as the p r e s s u r e  in neighboring regions.  
This region should be an a rea  of intense vor t ex  flow. 

The exper iment  indicates (Fig. 2) the re  is a region in the neighborhood of the t r iple  point where  the 
density behind a front  inc reased  downst ream and does not dec rease  as it does in neighboring regions.  
The exis tence  of a region of Winversew densi ty gradients  is also a conf i rmat ion  of the proposed assumption 
since the input of mass  into the angular  region (03-02) is only possible with such a t rend  in density gradient  
and p r e s su r e .  

Equations (3.1) were  der ived under  assumption of the ex t remal i ty  of the angle of deflection of the flow 
pass ing through the two fronts .  There  a re  two such angles - a minimum 02 ~ and a maximum 0 2 ~ In both 
cases ,  the densi ty drops at the f ronts  in the neighborhood of the t r ip le  point a re  identical.  The ref lect ion 
angles fl for  the minimum angles 02 ~ a re  c lose  to those observed.  

The authors  thank S. A. Khrist ianovich for  considerat ion of the work and advice. 
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