MACH REFLECTION OF WEAK SHOCK WAVES
FROM A RIGID WALL
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On the basis of experimental observations and theoretical analysis of flow structure in the
neighborhood of the triple point, it is shown that one should reject the condition for equality
of the angle of deflection of flows passing through the Mach front and the two other fronts

and replace it with some supplementary condition. The system of consistency equations in the
indicated region is closed by an equation which is obtained under the assumption of the ex-
tremality of the deflection angle of a flow passing through the incident and reflected fronts.
Calculations of the pressure drops behind the shock fronts agree with experimental data in
this case.

1. The relations characterizing the reflection of weak shock waves from a rigid wall have been
studied rather completely within the confines of the acoustic approximation [1}. For large angles of inci-
dence, the results of this work can be extrapolated to the case of waves of small but finite amplitude.

At small angles the linear acoustic approximation is qualitatively incorrect. As has been shown [2,
3], the theory of small perturbations leads in this and similar cases to nonlinear equations for short waves
with nonlinear boundary conditions. Within the framework of the theory of short waves, the problems of
regular reflection and almost-grazing incidence were considered where the reflected shock wave degener-
ates into 2 weak discontinuity [2, 4]. In the latter case, the motion can be studied by the Lighthill method

[51. :

The problem of Mach interaction of shockwaves with relatively small but finite pressure drops at
angles of incidence close tothe critical angle has also been considered [2, 3]. The magnitudes of the pres-
sure drops at shock fronts in the neighborhood of the triple point were not determined in [2-9]. Experi-
mental papers [6-9] and review papers in [10, 11] are concernedwith this problem.

This paper presents the results of an experimental study with a shock tube, using optical methods,
of Mach reflection of weak shock waves from a rigid wall over a broad range of angles and relative inten-
sities along with some theoretical relations which were obtained from the consistency condition at the shock
fronts,

Let a plane shock wave be incident on a wedge with an opening half-angle . The angle between the
normal to the reflected shock front at the point of intersection of the shock waves and the surface of the
wedge is called the angle of reflection § and « is the angle of incidence. Regular reflection occurs for
angles a greater than a certain critical angle a*. One can establish a relation between ¢, g, and the inten-
sities of the incident and reflected shock waves, AP, =P,—P, and AP,=P,—P, at their point of intersection.
Here, P, is the initial pressure; P, and P, are the pressures behind the incident and reflected shock fronts.

Simple approximate formulas were obtained for this case [2]. A ratio of the pressure drops at the
point of intersection of the shock fronts AP,/AP; ~ 3 corresponds to the critical angle. When < a*, a
third, Mach shock wave arises which connects the point of intersection of the incident and reflected shock
waves with the rigid wall. We superimpose the origin O of a cylindrical coordinate system r, ¢ on the
angle of the wedge and measure the angle ¢ from the surface of the wedge. If the flow is self=similar, the
point of intersection A of the three shock waves must be displaced along some ray ¢ = y. The pressure

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 26-33,
September-October, 1973, Original article submitted May 14, 1973,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

624



differential drops along the reflected wave in proportion to separation from the triple point and the re-
flected wave degenerates into a weak discontinuity with sufficient separation.

Let ry=r; (¢ t), r; =1y (¢, t), and ry=ry (¢, t) be the equations for the incident, reflected, and Mach
shock waves. We write the equations for these fronts and the consistency conditions on them:

dry [ 8t = N1 + tg? (o 4 @)
u =gy cos (¢ + @), v =—gsin(a+ ¢

dry / 8t = [N, + g, cos (a + B)I1 + tg® (B — @)I'*

U, = gy c08 (B — @) + ¢, cos (a + @)

vy=gsin(f —¢) — g sin(a + ¢

ry/dt = Ny (1 + tg?g)

Uy = qgco8yP, vg= — gzsiny

Nig = c2ll + 1/ o(n + 1)eg5] (1.1)
No? = cofll + Yy(n — 1)e;, + Y5 (n + 1)e,] (1 + Ty)-t

gis = a1 + Ya(n + 1)ey 51!

7 = co*(ep — &)1 + Vy(n — 1)e; + Vy(n 4 1)e,]-* (1 4 Ty)-2

Ty = ep5ll + Yo(n — 1)gy, 41!

T, = ey(1 + ne)ll + ney + Yy(n — 1)ey + Yy(n? - 1)e) + Yy(n — 1)%,e,]-?

& = (P; — Po) [ nPo, T; = (pi —po) / po, 1=1,2,3

Here, ¢ is the angle between the normal to the Mach shock front and the direction of the radius vec-
tor; N, ; are the rates of propagation in the directions of the normals to the incident and Mach shock fronts;
N, is the rate of propagation of the reflected shock front with respect to the particles by which it is prop-
agated; q;, dj, and q; are the differential particle velocities at the corresponding shock fronts; 0y, Py, and
pj are the densities behind the corresponding fronts; p, isthe initial density; u and v are the projections of
the particle velocity vectors on the direction of the radius vector and perpendicular to it; t is time; ¢, is
the velocity of sound; n is the adiabatic index,

At the point of intersection of the three shock waves,
rn=r3="rs Py, =P, (1.2)

The last condition is satisfied if the configuration of the shock waves is such that the flow behind the
fronts is subsonic. If the flow is supersonic, centering of a rarefaction wave is possible.

Ordinarily we have for a third condition at the triple point [10] equal deflection of the flows passing
through the two shock fronts, (@,), and through the single (Mach) shock front (®@,). Since

vacos (o 4 @)

vscos (¢ + @)
M —u;cos@a+9)° (1.3)

tge”=N;—uacos(ct~}—q>)

tg 6, =

this condition can be written in the form
o[ Ny — ugcos (@ + x)] = v3N; — u,y cos (a + y)] (1.4)

I r, or ¢, are considerably less than one (weak shock waves), Eqs. (1.1) can be considerably sim-
plified by expanding these equations in a series in powers of I'y, £, Or any other parameter 1 charac-
terizing the relative density or pressure drop at the incident wave front. In first approximation, Eqs. (1.1)
take the form

(86, /89°) = 28, + 288, /ot — v, v, = — 1y 86, / 09°
(96, / 09°)® = 28y + 208,/ 9t — ¥, — T Vo= —(Vo — 7108 / 09"+ v, (1.5)
(085 / 09°)% = 28, + 2085/ 0t — 5, vy = — 7y, 965/ a¢°
p=rv

Here the following dimensionless coordinates and functions were introduced in accordance with [2]:

° = gl¥y(n + )T-", 6 = (r — cot)My(n 4 1)Toeqt]-?
v =0/ elolYoln + )T 14, = ule,T, (1.6)
=T/ I‘o, T=1Int¢
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749785, 8 Equations (1.5) are a first approximation for the expansion of Egs.
vJ;T\\ (1.1) in a series over a small parameter under the condition ¢ ~ 1*01/2.
827 Lt —. ‘\ If the flow is explicitly independent of time, Eqs. (1.5) take the form
TN 5,1 g = @6~ 0% = = dby
] G I e Y d6, / dg° = (26 — 12 — W), Vo= — (ya—711) 48,/ dg® + v, (L7
;\. 4 dbg/ dg° = % (265 — y9)'t, vy = — y;dS, / d¢°
; \,\. . :} : We obtain from Eqs. (1.2) and (1.4) conditions at the point A for a
, | g \ ; g,‘:ql 9, first approximation
‘ 4 6, =0, =083 Ya=17vs Va="; (1.8)

Fig. 1 Since in first approximation we have at the point A

db,/de° = by, db,/de® =b,, db,/dy° = ¥°

by = (@ + )Mo(n + HTI-", - by = (B — )Ya(n + 1) Tol-* (1.9)
Yo = Y[Vy(n + 1)Ll

Eqgs. (1.7) at this point are transformed to

vi= — b Vo= = (v2— 7)) (0% — 1) — by )
vs =k Talby? — o+ ™ b = = (b — v (1.10)
P = % (b® — v, + v

Figure 1 shows the dependence of v, and v3 ony, in accordance with Eqs. (1.10) and the dependence
of 8,°=0,Ty~![ !/, m+1)Ty]"/2 and 9 2" =0, T~'[1/, (n+1) T} ~*/2 on y,, which was obtained from calculations
based on Eqs. (1.1) for the case 1= F1 —0 02. In both cases, the angle by was taken to be 1.85

05°(ve) = Vao(¥2),  B5°(py) > v4(yy) for T, —0

It is clear from the curves shown that Eqs. (1.10) have single root y,=1 when 1y — 0 since the curves
V; (7v9) and v (y,) intersect only at the initial point. The corresponding shock curves for Mach and re-
flected waves also intersect only at the point y, =1. Calculations show that the curves intersect only at the
initial point for I'y £ 0.2 and for all angles of incidence corresponding to Mach reflection. This corre-
sponds to degeneration of a reflected shock wave into a weak discontinuity.

The case where centering of a rarefaction wave occurs in the neighborhood of the triple point A
(Prandtl —Meyer flow) is theoretically possible [12]. The equations for this flow in the notation (1.6) take
the form [3]

v = — Yy (86— 84 (90 — a0 + 74
v =1y (8 — 84)° (90 — a)S + va

or
Y=~ [Bv — vl + 34 1.11)
The slope of the characteristic with respect to a direction perpendicular to the radius vector to the
point A is determined by
dé /de® = —[2 (6 — y)I* (1.12)

One easily obtains from Eqgs. (1.10)-(1.12) the following expressions for the determination of all flow
parameters in the neighborhood of the triple point,

by = [M3 (b — v, va =13 (5® + )
vy = —(yp — vIYa(b® — )l — i, (1.13)
Y= (23 — 79" vs=— 75}

Vs = T2 — al3 (v — wIs

In the neighborhood of the triple point A, y; < v,; the maximum value y, =2.5 is reached when b;=2,
The density drop along the reflected wave front first increases in proportion to separation from the triple
point, reaching a maximum at some distance from it, and then falls.
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Fig, 2 Fig. 3

2. The reflection of weak shock waves from a wedge was studied experimentally for 0.009< T, <
0.132.

The experiments were performed in a diaphragmmed shock tube with a rectangular channel 90 x 45
mm in size. In order to produce shock waves of lowest possible intensity, a high-pressure chamber was
used whichhad a cross-sectional area five times smaller than the cross-sectional area of the channel. Between
the high-pressure chamber and the channel, a transition section was installed in the form of a nozzle with a profile
selected so that formation of reflected wave trains from the wall which perturb the "plug" behind thelead wave
was avoided, By varyingthe pressure inthe channel from 0.2 to 11 kg/cm? and the drop at the cellophane-film
diaphragm from 1 to 3kg/cm?, we were able to vary the wave intensity over the range 0,009 < 'y <0,34, The shock
tube was equipped with an IAB-451 shadowgraph, an IT-42 Mach —Zender interferometer, and an SFR high-speed
camera. Shadowgraphs and Schilieren photographs were taken to obtain clearer pictures of shock-wave
configurations. To measure the distribution of the density drop at the shock fronts and in the flow behind
them, interferograms were taken with an initial infinitely broad band and with bands of finite width.

The first kind of interferogram (Fig. 2) makes it possible to follow in detail changes in the reflec~
tion pattern during variation of the initial conditions since the interference bands correspond to lines of
equal density in this case.

The second type of interferogram (Fig. 3) is suitable for obtaining numerical values of the density
at any point in the field.

In calculating the reflection pattern within the confines of the short-wave theory, the basic function
sought is v (in [2, 3], it is u; in first approximationyu =+).

Values of y along the reflected and Mach fronts were measured with the help of the second kind of
interferogram. The density drop Ap is proportional to the band shift Am at the corresponding point in the
interferogram. If the density drop is Ap; behind the front of the incident shock wave and the band displace-
ment on the interferogram is Amy, then for 1, =T,

Ap/ Ap; = Am /[ Am, =y

To obtain more precise data, the device was fired several times with the same wave parameters and
angles «. The initial position of the interference bands varied slightly from experiment to experiment.
Interference patterns were recorded in white and monochromatic light. With reliable identification of a
band, this made it possible to increase the accuracy of band-shift measurement to 0.05 bands for an inci-
dent wave and to 0.1-0.3 bands for reflected and Mach waves. The error in the determination of incident-
wave intensity and of the value of y did not exceed 2 and 5% respectively.

The interferograms and shadowgrams demonstrated the self-similarity of this phenomenon. Wave
configurations at various moments of time were similar. Along rays starting from the angle of the wedge,
the density drop at the shock fronts during motion remained unchanged, i.e., y =7y (¢) for given r, and a.

Averaged curves in the y, ¢ plane were constructed from an analysis of a series of interferograms
for identical r; and @. The values of y at the foot of the Mach wave (yp) and at the triple point ¢y A) were
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were determined from the points of intersection of the resultant curve with the lines ¢ =0 and x. For
example, the relation vy (¢) for 1;=0.132 is shown in Fig. 4. Curve 1 was obtained for y =32° (x =0),
curve 2 for y =26.3° (x =1.2°), and curve 3 for y =20.5° (x =3.4°). The position of the triple point A is
shown on each curve. The maximum density drop is reached at the shock front on the surface of the wedge.
The density drop along the Mach and reflected fronts, and the quantity v corresponding to it, fall monotoni-
cally in proportion to the increase in the angle ¢. At the triple point
Ya=7va(e, T) or va=vya(e+y T)
When Ty <1, the motion can be discussed within the confines of the short-wave theory. In this case
Y4 = ¥a (by) : (2.1)

Values of y, (by) corresponding to 0.0085 =y = 0.022 are indicated in Fig. 5 by open circles. The
data presented indicate the density undergoes a jump at the reflected wave front even for very small
values of Iy and small wedge angles (a < 1/2 a*).

3. The facts established cannot be explained within the framework of the three-shock theory. The
difficulties which arise in an attempt to explain the observed phenomena have been discussed [6, 13]. We
assume that the pressure drops at the shock fronts in the neighborhood of the triple point A and the angles
a+ X, B— X, and ¥ associated with them take on values for which the flows passing through the incident
and reflected shock fronts are deflected by the minimum possible angle. The values of v, are also minimal
then. The flow deflection angles ®,° and @, in the shock curves in Fig. 1 correspond to this mode of motion.

Under such an assumption, one can obtain in first approximation the dependence of by and by on yp
by = [MyBya — D%, by, = [Uy(ya — DI (3.1)

The curve Y, =v, (b)) calculated from Eq. (3.1) is shown in Fig. 5. The experimental data (open
circles) areto the left of this curve. With an increase in r,, the points obtained from an analysis of the
experimental data are shifted even more to the left. If in place of the argument

by = (¢ + WYa(n + YLl = (@ + 1)(Vza*)!
in Eq. (2.1), we take
bie = (@ + 3) (Yya *)-!
the experimental data obtained for 0.0085 =T, = 0.132 (solid circles in Fig. 5) lie on the general curve.
Equations (3.1) are transformed to
@ + 1 = Yo yBys — DI
. (3.2)
B — % ="har [y (ya — N

Here, o* is the value of the critical angle calculated from the asymptotic expression, ag* is the
observed value, and a *— ae¥, by— b;e when T, — 0. The difference between a* and o * is significant
when 1y > 0.05.
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Thus the experiments are in agreement with Egs. (3.2) and disagree qualitatively with the theory
given in Section.1.

Apparently Eq. (1.4) is not satisfied at the triple point, i.e., in the neighborhood of that point, the veloc-
ity vectors of the particles passing through one and two shock fronts form a finite angle ®; —®, in the
moving coordinate system. There must be a region bounded by two tangential discontinuities where the
velocity is considerably reduced and the pressure is the same as the pressure in neighboring regions.

This region should be an area of intense vortex flow.

The experiment indicates (Fig. 2) there is a region in the neighborhood of the triple point where the
density behind a front increased downstream and does not decrease as it does in neighboring regions.
The existence of a region of *inverse® density gradients is also a confirmation of the proposed assumption
since the input of mass into the angular region (9;—6,) is only possible with such a trend in density gradient
and pressure.

Equations (3.1) were derived under assumption of the extremality of the angle of deflection of the flow
passing through the two fronts. There are two such angles —a minimum 6,° and a maximum 6 ,°'. In both
cases, the density drops at the fronts in the neighborhood of the triple point are identical. The reflection
angles § for the minimum angles 6,° are close to those observed.

The authors thank S. A. Khristianovich for consideration of the work and advice.
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